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Measurements of heavy particle dispersion have been made using direct numerical 
simulations of isotropic turbulence. The parameters affecting the dispersion of solid 
particles, namely particle inertia and drift due to body forces were investigated 
separately. In agreement with the theoretical studies of Reeks, and Pismen & Nir, 
the effect of particle inertia is to  increase the eddy diffusivity over that of the fluid 
(in the absence of particle drift). The increase in the eddy diffusivity of particles over 
that of the fluid was between 2 and 16%, in reasonable agreement with the increases 
reported in Reeks, and Pismen & Nir. The effect of a deterministic particle drift is 
shown to decrease unequally the dispersion in directions normal and parallel to  the 
particle drift direction. Eddy diffusivities normal and parallel to particle drift are 
shown to be in good agreement with the predictions of Csanady and the experimental 
measurements of Wells & Stock. 

1. Introduction 
One of the most fascinating aspects of turbulent fluid motion is the greatly 

increased diffusion of scalar quantities suspended in it. These scalars may be smoke 
or dye which are able to follow all of the velocity fluctuations. However, these scalars 
may also be heavy particles which cannot follow all of the turbulent velocity 
fluctuations because of their finite inertia. This aspect of turbulent diffusion, i.e. the 
motion of heavy particles in a turbulent flow field, is made somewhat more 
complicated because of the additional parameters that enter into the problem. 
Prediction of these flows is important since particle-laden turbulent flows occur in 
many technologically important areas. Flows in energy conversion devices or 
problems in pollution control being two examples. 

As originally shown by Corrsin (1961), the problem of turbulent diffusion is more 
suitably analysed in a reference frame that is att-ached to individual particles, i.e. a 
Lagrangian reference frame. Indeed, the first fundamentally correct theory of 
turbulent diffusion by G. I. Taylor (1921) is derived in a Lagrangian framework. The 
fact that turbulent diffusion is more suitable for analysis in a Lagrangian reference 
frame makes the problem less tractable using traditional laboratory measurements 
since these are made in the fixed Eulerian reference frame. Thus, one approach to 
solving problems of turbulent diffusion is to relate much more easily acquired 
Eulerian statistics to the Lagrangian quantities required for the theories. Examples 
of theories relating Lagrangian and Eulerian statistics include the work by Lumley 
(1961) equating the one-point moments of the Lagrangian and Eulerian probability 
density functions and Corrsin’s conjecture (1959) expressing the Lagrangian velocity 
autocorrelation of fluid elements in terms of the two-point, two-time correlation of 
Eulerian velocities. 
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The theories of Taylor (1921) for isotropic turbulence and later extensions by 
Batchelor (1949) and Corrsin (1953) to homogeneous turbulence are equally 
applicable to heavy particle dispersion. The problem of heavy particle dispersion is 
more complicated than fluid point dispersion because of the lack of coincidence 
between the path of a heavy particle and the motion of a fluid element. Thus, 
additional dynamical equations must be solved to obtain the velocity field of the 
particle and its subsequent displacement. The first theoretical attempt a t  solving the 
equation of motion for a sphere in a turbulent flow to predict the dispersion of 
particles is that by Tchen (1947). Tchen linearized the equation of motion for a 
sphere in a turbulent flow in order to obtain expressions relating the eddy 
diffusivities of heavy particles to that of the fluid elements surrounding the particle. 
Unfortunately, the extremely restrictive assumptions made in order to  solve the 
equation of motion make application of the results rather impractical for most 
problems of engineering interest. Lumley (1957) also used the equation of motion to 
analyse the dispersion characteristics of heavy particles and concluded that the 
problem could be resolved only on the level of functional probabilities. 

For many applications of heavy particle dispersion the governing equation of 
particle motion may be greatly simplified. For example, if the density of the particle 
is much greater than the density of the carrier fluid (e.g. solid particles in air) then 
many of the forces in the equation of motion are negligible compared to the drag 
force. Furthermore, if the drag force obeys Stokes law then the equation of motion 
is linear in the velocity difference between fluid and particle. Thus, for many cases 
of practical interest the equation of motion for the particle is the linear drag term and 
also some imposed body force, typically gravity. Under these simplifying 
assumptions the principal effects influencing particle dispersion are inertia and drift. 

It is well known that the deterministic drift of a particle through a turbulent flow 
field gives rise to a ‘crossing-trajectories effect ’ which in turn reduces the dispersion 
of particles over that  of the turbulence (Yudine 1959 ; Csanady 1963). It is also well 
known that the effect of crossing-trajectories reduces the dispersion of the particles 
unequally in directions parallel and normal to the direction of drift because of a 
related continuity effect. The effect of particle inertia on dispersion is not as clear 
since the particle eddy diffusivity is a function of its mean-square velocity and 
velocity autocorrelation. For increasing inertia the mean-square velocity fluctuations 
are decreased (thus decreasing the diffusivity) but the memory of the particle to  its 
previous velocity is increased (thus increasing the diffusivity) and therefore the total 
effect on the particle diffusivity is not clear. 

1.1 .  Previous work and objectives 
The results from laboratory experiments are often difficult to interpret since the 
effects of inertia and particle drift are not always separated. Snyder & Lumley (1971) 
used a photographic technique to measure directly the Lagrangian velocity 
autocorrelations of individual particles in grid-generated isotropic turbulence. The 
results from this experiment showed that the velocity autocorrelations of heavy 
particles decreased faster than that of the light particles. Since the effects of inertia 
and drift were not isolated in this experiment the results were influenced by the 
crossing-trajectories effect. Wells & Stock (1983) performed a similar experiment in 
grid turbulence. In  this experiment an electric field was imposed across the test 
section of the wind tunnel in order to cancel or enhance the effect of crossing- 
trajectories. In  the absence of the crossing-trajectories effect, they found the 
asymptotic diffusivity to be weakly affected by particle inertia, though the 
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dispersion of heavy particles was slightly greater than that of light particles. Since 
it is often difficult to control the additional parameters in a laboratory experiment, 
effects such as uneven particle size or measurement errors can lead to results that are 
counter-intuitive. For example, Calabrese & Middleman (1979) examined the 
dispersion of particles in a turbulent pipe flow and their measurements showed the 
fluctuating velocities of the particles to be greater than that of the carrier fluid. 

Theoretical approaches include work by Reeks (1977), who examined heavy 
particle dispersion in fluid velocity fields where the distribution of the fluid velocities 
was Gaussian, homogeneous, isotropic, stationary, and of zero mean. Reeks found 
that in the absence of particle drift the long-time particle diffusion coefficient was 
greater than that of the fluid for increasing values of the particle inertia. Pismen & 
Nir ( 1978) also examined particle dispersion assuming the characteristic function of 
the velocity field to be Gaussian and using Corrsin’s ‘independence approximation ’ 
(Corrsin 1959). Results from their study also showed that the particle eddy 
diffusivity increases for increasing particle inertia. Meek & Jones (1973) obtained 
expressions for the velocity autocorrelations, particle dispersion, and eddy 
diffusivities of particles using an assumed form for the Lagrangian velocity 
autocorrelation of the fluid. They obtained good agreement with Snyder & Lumley’s 
data by stretching the frequency axis of the particle energy spectrum to account for 
particle drift. Maxey (1987) has examined the gravitational settling of aerosol 
particles in flow fields comprised of random Fourier modes and finds that the effect 
of particle inertia increases the settling velocity over the still-fluid value. Fung & 
Perkins (1989) have used a similar simulation technique to examine particle 
dispersion and find that in the absence of particle drift, the long-time eddy diffusivity 
of heavy particles is greater than that of the fluid. 

While these previous efforts have provided some insight, additional information is 
required to increase the basic understanding of particle dispersion in turbulent flows. 
Laboratory experiments are often plagued by measurement uncertainties and 
difficulties isolating the effects influencing dispersion. Theoretical approaches often 
rely on simplifying assumptions that render the results of limited value. An 
alternative to increasing the basic understanding of particle dispersion in turbulent 
flows may be obtained using Direct Numerical Simulation (DNS) in which the 
Navier-Stokes equations are solved without resorting to turbulence modelling. The 
results from the simulation may be treated as experimental data with detailed time 
dependent measurements available a t  a large number of locations. Using DNS to 
obtain Lagrangian statistical information is also relatively straightforward since the 
necessary measurements are made following a particle path using suitable 
interpolation techniques. The use of DNS circumvents many of the previously 
mentioned difficulties associated with laboratory experiments and theoretical 
approaches but unfortunately is limited to low Reynolds number. 

DNS was first used by Riley & Patterson (1974) to investigate particle dispersion 
in decaying isotropic turbulence. Using coarse grid computations (323) and a 
relatively small number of particles over which statistics were computed (432 
particles) they measured particle dispersion, particle energies, and velocity 
autocorrelations. Their results showed that the velocity autocorrelation was 
increased for increasing values of particle inertia. Elghobashi & Truesdell ( 1989) have 
also used DNS to examine particle dispersion in decaying isotropic turbulence and 
report good agreement with the data of Snyder & Lumley. McLaughlin (1989) has 
examined particle deposition using DNS of channel flow and finds that particles tend 
to accumulate in the viscous sublayer. Recently, Squires & Eaton (1990) have used 
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DNS to investigate particle response to turbulence and modification of turbulence by 
particles. DNS has also been used by other investigators to obtain Lagrangian 
statistical data of fluid points (see Lee et al. 1988; Yeung & Pope 1989). 

The results in this paper were obtained using DNS of both decaying and forced 
isotropic turbulence. Quantities such as time histories of particle energies, relative 
velocities, particle dispersion, velocity autocorrelations, and eddy diffusivities are 
presented. The effect of turbulence decay is investigated to determine its effect on 
heavy particle dispersion. The simulations of forced isotropic turbulence are useful 
for investigating particle dispersion since the analysis is not complicated by 
turbulence decay. Where possible the results have been compared to existing theories 
and in general the agreement is good. 

2. Theory 
The first fundamentally correct theory of turbulent diffusion was derived by 

Taylor (1921) for stationary isotropic turbulence. Batchelor (1949) and Corrsin 
(1953) extended the theory to homogeneous turbulence. I n  Taylor's theory the 
dispersion tensor for a single particle is expressed in terms of the particle velocity 
fluctuations and Lagrangian velocity autocorrelation : 

Throughout this paper repeated italic indices imply summation while repeated Greek 
indices are not summed. I n  (2.1) angle brackets denote ensemble averages, wi is the 
component of the particle velocity in the i th direction and R$(7) is the autocorrelation 
of particle velocities. The velocity autocorrelation is defined as 

Notice that for statistically stationary turbulence the velocity autocorrelation is a 
function of only the time separation, T .  

As shown by Batchelor (1949), the dispersion tensor and Lagrangian velocity 
autocorrelation are related to  the eddy diffusivity tensor through the following 
relations : 

Equation (2.3) illustrates that  the eddy diffusivity is a time-dependent quantity, 
reaching a constant value only a t  long diffusion times. 

Batchelor also introduced the spectral tensor, E$(w),  which is the cosine transform 
of the velocity autocorrelation : 

( v ~ ) ~ ( v ; ) ~ R $ ( T )  = E&(w) cos WTdw.  J: 
The eddy diffusivity tensor may be expressed in terms of E$(w) as 

(2.4) 
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Tchen (1947) linearized the equation of motion for a sphere in a turbulent flow and 
obtaincd expressions for the eddy diffusivitics of particles and fluid. Tchen derived 
his theory for turbulence that is homogeneous and steady. Among the assumptions 
of his thcory is that the particle is spherical and small enough such that its motion 
relative to the fluid follows Stokes law and the particle is small compared to the 
smallest turbulence lengthscales (i.e. the Kolmogorov scale). The most restrictive 
assumption in his theory is that during the motion of the particle the fluid 
surrounding the particle remains the same. This assumption implies that  the fluid 
elemcnts surrounding the particle are not distorted during the particle motion and 
that the particle does not 'overshoot ' the fluid element surrounding the particle. 
However, for turbulent flows it is well known that fluid elements are continuously 
stretched and distorted and therefore the range of applicability of Tchen's theory is 
rather limited. 

Given the assumptions Tchen uses to close this theory he finds that a t  short 
diffusion times 

where Dpaa is the diffusivity tensor of the heavy particles and Df" is that  of the fluid 
in the neighbourhood of the particle. The velocities of the particle and fluid in the 
vicinity of the particle are denoted v, and u,, respectively. For long diffusion times 

Equations (2.6) and (2.7) give the short- and long-time asymptotes of the eddy 
diffusivity of the particles in terms of the eddy diffusivity of the fluid. For values of 
time between these asymptotes (2.3) may be used to determine the eddy diffusivity. 
However, as can be seen from (2.3) knowledge of the Lagrangian velocity 
autocorrelation of the particle velocity is required. An alternative to choosing a 
functional form of the velocity autocorrelation of the particles is to make use of the 
fact that the power spectrum of the particle velocities can be related to the power 
spectrum of the fluid velocities along the particle path through relations of the form 

E;&J) = m2E?&), (2.8) 

where a is often referred to  as the particle response function. For Stokes drag a takes 
the form 

The form of the response function is modified if additional forces are included in the 
particle equation of motion (see Hinze 1975). 

Since the velocity correlation of the fluid along the particle path, R;$(T), is the 
cosine transform of the power spectrum, Efk(w),  assuming a functional form for 
RKF(r) allows determination of EKF(w) and then Eiii(w) through (2.8). Finally, given 
Ekii(w) the Lagrangian velocity autocorrelation of the particle is obtained through 
the use of the cosine transform relationship (equation (2.4)) and this can be used to 
determine the time-dependent nature of the diffusivity. 

This approach has been used by Gouesbet, Berlemont & Picart (1984) in their 
analysis of turbulent dispersion of heavy particles. The functional form used for the 
velocity autocorrelation of the fluid along the particle path is 
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(2.10) 

where PLi, is the Lagrangian time integral scale tensor of the fluid along the particle 
path. This functional form was originally used by Frenkeil(l953). For m = 0 a simple 
decaying exponential form of the autocorrelation is obtained while for increasing 
values of m the correlation function given by (2.10) will have negative loops. 
Gouesbet showed that for values of m greater than 0, it is possible for the ratio 
Dpt,(t) /D&(m) to be larger than 1 for some values of time. Since their analysis uses 
the results of Tchen’s theory as a starting point it’ should be remembered that the 
ratio D,,(t)/D&(oo) will eventually be equal to 1 a t  long diffusion times. Thus, if 
R ~ $ ( T )  has negative loops it is possible that heavy particles will disperse faster than 
fluid elements for some values of time. Since Gouesbet‘s results are obtained in the 
framework of Tchen’s theory it seems unlikely that the correlation function, RF;(r), 
should have negative loops. This is because one of the assumptions in Tchen’s theory 
is that the fluid neighbourhood surrounding the particle remains the same throughout 
the particle motion, i.e. the particle does not overshoot. I n  any case, Gouesbet argues 
that (2.10) should be used with m = 1 and it can be shown that particles may disperse 
faster than fluid elements. 

It should also be remarked that the results obtained by Taylor (1921), Batchelor 
(1949) and others are applicable to  turbulence that is homogeneous and statistically 
stationary. To apply these theories to the prediction of heavy particle dispersion 
requires that the velocity of a heavy particle be a stationary random variable. 
However, because of inertia the velocity of a heavy particle will exhibit an 
adjustment period following its release in which its velocity may not be considered 
a stationary function of time. Following this adjustment period the velocity of a 
heavy particle may be considered a stationary function and the relations outlined 
above are applicable for predicting the dispersion of heavy particles. 

Finally, it is also important to emphasize that the results obtained by Tchen, 
Gouesbet, and others are derived in the absence of some externally imposed force 
field (e.g. gravity). Yudine (1959) and Csanady (1963) have shown that diffusivity of 
heavy particles is reduced over that of the fluid due to the crossing-trajectories effect. 

3. Overview of the simulations 
The three dimensional, time-dependent Navier-Stokes equations were solved for 

an incompressible fluid using the pseudo-spectral method originally developed by 
Rogallo (1981). This method is used to compute homogeneous turbulent flows and 
since homogeneous turbulence is in principle unbounded, numerical simulations of 
these flows employ periodic boundary conditions in a finite computational domain. 
Using a series representation the velocity field is expressed as a truncated Fourier 
series, i.e. 

(3.1) 

In  (3.1) u,(x, t )  is the j t h  component of the velocity in physical space and G,(k, t )  is 
the Fourier coefficient of uj at  wave vector k. Substituting expressions such as that 
given by (3.1) into the Navier-Stokes equations and then applying the orthogonality 
property of exp ( ik-x)  yields ordinary differential equations for G,(k, t ) .  An advantage 
of using a series representation of the dependent variables is that extremely accurate 

u,(x, t )  = C Gj(k, t )  exp ( ik-x) .  
k 
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evaluation of spatial derivatives is possible because of the exponential convergence 
of the series (Gottlieb & Orszag 1977). 

Evaluation of the nonlinear terms in a pseudo-spectral method is efficient since 
computation of these terms in physical space is less costly than in spectral or 
Galerkin rncthods. The transformation between wavenumber apace and physical 
space can be accomplished efficiently using the fast Fourier transform algorithm 
(Cooley & Tukey 1965). Evaluation of the nonlinear terms in physical space gives rise 
to aliasing errors which are eliminated in the present code using a combination of 
coordinate shifts and truncation. The ordinary differential equations for the Fourier 
coefficients are time advanced using second-order RungeKutta.  For further details 
of the mcthod see Rogallo (1981) and Lee & Reynolds (1985). 

3.1. Properties of the Eulerian field 

Particle dispersion was investigated using simulations of decaying and forced 
isotropic turbulence. The simulations of decaying isotropic turbulence were 
performed using 12@ points for the hydrodynamic computation while the simulations 
of forced isotropic turbulence were computed using 643 points. The computations 
were run on the Numerical Aerodynamic Simulation (NAS) facility Cray-2 
supercomputer a t  the NASA-Ames Research Center. 

The initial energy spectrum for the simulations of decaying isotropic turbulence 
was specified following the procedure of Lee & Reynolds (1985). Using this method 
of initialization the three-dimensional energy spectrum is specified as shown in (3.2) : [r:', k, < k < k,, 

E ( k )  = KEgk-0, k, < k < k,,,, 

otherwise. 

In (3.2), k is the magnitude of the wavenumber vector and E is the homogeneous 
dissipation rate. The maximum useful wave number is denoted k,,, and is 
determined by the de-aliasing scheme. For Rogallo's code k,,, = Bd2N where N is 
the number of grid points in one direction. The lowest non-zero wavenumber is 
expressed as k, in (3.2). The constant K for the spectrum has a value of approximately 
1.5 (sce Grant, Stewart & Moilliet 1962) and the value of C is obtained by matching 
the spectrum a t  k = k,. The wavenumber corresponding to the peak in the energy 
spectrum (k,) for the simulations of decaying isotropic turbulence was 9.06. 

The range of parameters from the simulations of decaying isotropic turbulence are 
summarized in table 1 where Re, is the Reynolds number based on twice the 
turbulence kinetic energy and Taylor microscale. For isotropic turbulence the Taylor 
microscale, A ,  is given by the relation 

The quantities q2 and 6 are twice the turbulence kinetic energy and homogeneous 
dissipation rate, respectively, and are determined from the three-dimensional energy 
spectrum : 

d -  - IomE(k)  dk, 

E = v J: k2E(k) dk. 

(3.4) 

(3.5) 
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(1  - 10)  t"/d 
FIGURE 1 .  Time development of the longitudinal integral scales in decaying isotropic 

turbulence. 0. a = 1;  0, a = 2 ;  A, a = 3. 

~~ 

Re, *I-& kmax 7 417, 
43.2 - 17.5 0.033 - 0.135 0.60 - 3.82 46.3 

TABLE 1 .  Properties of the Eulerian field from simulations of decaying isotropic turbulence 

The quantity A/L,,, is the ratio of the integral lengthscale to the computational box 
size. The integral lengthscale, A ,  is calculated using the three-dimensional energy 
spectrum, 

The duration of the simulations, t,, has been non-dimensionalized by the eddy 
turnover time, T,, a t  t = 0 where T, is estimated as 

A 

q 
7, = -. 

The Kolmogorov lengthscale is defined as 

(3.7) 

The length of the computational box, Lbox, was 2rt for all simulations. 
One check of isotropy from the simulations is the time development of the 

longitudinal integral scales. These lengthscales are obtained by integrating the area 
under the two-point spatial correlation, 

(3.9) 

where Qii(r) is the two-point correlation defined by, 

&i#) = < U i ( X )  Uj(X + r ) )  (3.10) 

The integral scales defined by (3.9) are shown in figure 1 .  It can be seen from the 
figure that the integral scales are persistently isotropic throughout the simulation. 
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Re, ' l L b 0 x  k m ~  7 L d L b o x  q2/(ere) @ / ( & b o x )  

38.7 0.126 1.41 0.184 4.34 1.29 

TABLE 2. Properties of the Eulerian field from simulations of forced isotropic turbulence 

dissipation decay with a nearly constant slope while the Taylor microscale shows an 
almost constant increase with respect to time when plotted in log-log coordinates. 

Assuming the decay of the turbulence energy obeys a power law and that it is self- 

q 2  z at-", (3.11) 
preserving implies 

and turbulence lengthscales grow as 

L, z (3.12) 

The value of the decay exponent for q2 is approximately 1.4. This exponent is in 
general agreement with the decay exponents obtained from simulations of isotropic 
turbulence by Lee & Reynolds (1985) and the experimentally determined values of 
Warhaft (1984) and Stapountzis et al. (1986). Warhaft obtained a decay exponent of 
1.32 for the transverse fluctuations while Stapountzis et al. determined the decay 
exponent of the transverse velocity fluctuations to be 1.43. Using a value for the 
decay exponent of 1.4for q2, equation (3.12) would predict the turbulence lengthscales 
grow as However, results from the simulations show the lengthscales grow more 
like (e.g. see figure 3a). Thus the simulation data is not quite self-preserving, i.e. 
decay of the velocity scales is not precisely compensated by growth of the 
lengthscales. This is a characteristic of isotropic turbulence in the initial stage of 
decay (Hinze 1975). 

Stationary isotropic turbulence was achieved by artificially forcing the low 
wavenumbers (large scales) a t  each timestep. The forcing scheme used for these 
simulations was developed by Hunt, Buell & Wray (1987). I n  this method a steady, 
non-uniform force field is introduced a t  the large scales of the flow. Starting from an 
arbitrary initial condition, a statistically stationary state is achieved after some 
time, in which the average rate of energy addition to the velocity field is equal to the 
average energy dissipation rate. The forcing coefficients are constrained to satisfy the 
continuity condition as well as isotropy of the velocity field. A description of the 
algorithm used to generate the forcing coefficients is contained in Appendix A. 

After the Eulerian velocity field had evolved to a statistically stationary state, the 
Courant number (UmaxAt/Ax) was fixed so that time series data would be available 
at equally spaced time intervals. Lagrangian statistics were obtained only after the 
statistics of the turbulence field had become stationary. Table 2 summarizes the 
values of the hydrodynamic parameters in the 'developed' fields, i.e. after the 
calculation had reached a statistically stationary state. In  table 2, L, is the integral 
lengthscale obtained from the longitudinal velocity correlation (a = 1 in equation 
(3.9) 9 

The spatial energy and dissipation spectra from the simulations of forced isotropic 
turbulence are shown in figure 4. The energy spectra a t  wavenumber k are obtained 
by summing the magnitudes of the Fourier coefficients falling into a wavenumber 
band about k. These spectra were subsequently smoothed by multiplying by the ratio 
of the expected value of the modes in each band to the actual value contained therein 
(see Eswaran & Pope 1988 for further details). As is evident from the figures, a 
distinct peak in the spectra occur where the Fourier modes are forced. 
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FIQURE 4. Three-dimensional spatial energy and dissipation spectra in forced isotropic 
turbulence. 

3.2. Particle parameters 

The particle equation of motion integrated in the simulations was 

(3.13) 

where X,(t) and v,(t) are the position and velocity of the particle and g is the 
acceleration due to gravity. The quantity 9/01 is the Stokes settling velocity and is 
denoted var throughout this work. The coefficient a is the inverse of the particle 
response time and assuming that the flow around the particle follows Stokes law of 
resistance is given by 

(3.14) 

In (3.14) p is the dynamic viscosity of the carrier fluid, pp is the particle density, and 
d is the particle diameter. Equation (3.13) represents a balance of the particle 
acceleration with the drag force and gravity. For a as given by (3.14) the drag force 
in (3.13) is assumed t o  obey Stokes law. This is appropriate if the Reynolds number 
based on the relative velocity between the particle and fluid is significantly less than 
one. The particle is also assumed to be smaller than the smallest lengthscales of the 
fluid flow field. For a turbulent flow this means that the particle diameter is smaller 
than the Kolmogorov microscale, 7 (Maxey & Riley 1983). It is also assumed the 
concentration of particles is small enough such that particle-particle interactions are 
negligible and the turbulence is not modified by the presence of the particles. Thus, 
the results in this paper apply to the dilute limit of particle-laden turbulent flows, 
e.g. dispersion of aerosols under most atmospheric conditions (Pruppacher & Klett 
1978). 

For each simulation the trajectories of as many as 4096 particles were tracked and 
the time histories of particle position and velocity as well as the fluid velocity in the 
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FIGURE 5. (a) Three-dimensional spatial energy and dissipation spectra in decaying isotropic 
turbulence, spectra shown correspond to first measurement of Lagrangian statistics. -, E(k) /q2  ; 
_ _ _ _  , D ( k ) / c .  (b)-(d)  One-dimensional energy spectra E,(k,)/(c76)f in decaying isotropic 
turbulence, spectra shown correspond to first measurement of Lagrangian statistics. -, a = 1 ; 
__-- a = 2 . - . -  , a = 3 .  

Re, AIL,,, kUl,xT ATIT, 
32.3 0.045 0.96 19.0 
25.5 0.059 1.39 9.3 

TABLE 3. Turbulence properties corresponding to initial and final measurement of Lagrangian 
statistics in decaying isotropic turbulence 
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FIGURE 6. (a )  Three-dimensional spatial energy and dissipation spectra in decaying isotropic 
turbulence, spectra shown correspond to final measurement of Lagrangian statistics. -, E(k) /q2  ; 
~~~~ , D ( k ) / e .  (b)-(d)  One-dimensional energy spectra E,(k,)/(e$)a in decaying isotropic 
turbulence, spectra shown correspond to final measurement of Lagrangian statistics. -, a = 1 : 
__-_ , a = 2 ;  -.-,a=3. 

vicinity of the particle were stored for later post-processing. Since it is only chance 
tha t  a particle is located at a grid point (where the turbulence velocity is calculated) 
interpolation is required to obtain velocities of the turbulence along the particle 
trajectory. Both cubic splines and third-order accurate Lagrange polynomials were 
used to interpolate these velocities. It was found that more accurate interpolation 
techniques did not significantly improve the results. Since periodic boundary 
conditions are used for the hydrodynamic calculation there is no loss of accuracy of 
the interpolated particle properties when the particle is near a boundary. 
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rp /T ,  A!P/rl, var / i i  

0.06 184 0.32 
0.12 92 0.79 
0.37 31 1.59 
0.74 15 3.17 
1.24 9 
3.72 3 

TARLE 4. Particle properties for decaying isotropir turbulence 

After the turbulence had developed for a short time to eliminate the unphysical 
characteristics of the initial conditions the particles were time advanced using (3.13). 
For the simulations of decaying isotropic turbulence the particles were released once 
the skewness of the velocity derivative, au,/ax,. had reached a threshold value 
corresponding to ‘developed’ turbulence. The value of the skewness of au,/ax, 
corresponding to developed turbulence is approximately -0.4 to -0.5 (see Lee & 
Reynolds 1985; Tavoularis, Bennett & Corrsin 1978) and the particles were released 
when the skewness had attained a value of -0.4. The particles used to obtain 
Lagrangian statistics in the simulations of forced isotropic turbulence were released 
once the turbulence had evolved to a statistically stationary state. The simulations 
of forced isotropic turbulence were then time advanced either 6 or 13 eddy turnover 
times. For all simulations the initial particle velocity was taken to be identical to the 
fluid velocity a t  the initial particle position and the initial distribution of particles 
throughout the computational box was uniform. 

The Lagrangian data obtained from the simulations of decaying isotropic 
turbulence were computed using six reference times. The properties of the Eulerian 
field corresponding to the first and last reference time a t  which Lagrangian statistics 
were computed are summarized in table 3. 

The one- and three-dimensional spatial spectra of the turbulence at the first and 
last reference times a t  which Lagrangian statistics were measured are shown in 
figures 5 and 6. The three-dimensional spectra in these figures show that the 
computation contains a reasonable sample of the large eddies and adequate 
resolution of the dissipative scales. The one-dimensional spectra demonstrate that 
both the large and small scales are isotropic. 

Table 4 is a summary of the particle properties used for the simulations of decaying 
isotropic turbulence while the particle properties for the simulations of forced 
isotropic turbulence are contained in table 5. The particle time constant, rp,  has been 
made dimensionless using the fluid timescale based on L, and u’ = (&*)$ a t  the 
reference time of the measurement. This time scalc is denoted T,  throughout this 
work. The particle drift velocity, vdr, is non-dimensionalized using u‘ at the reference 
time of the measurement. The values of r p / T ,  and w d r / z i ‘  shown in table 4 correspond 
to the first reference time of the measurements. In tables 4 and 5, AT is the total 
length of time the particles were advanccd in the simulation. It is important to note 
that in table 4 the values of T J T ,  are representative of simulations wherc thc drift 
velocity, vdr, of the particle was zero, i.e. these simulations were used to investigate 
the effect of particle inertia on dispersion. The values of the parameter udr/u’ are for 
simulations where the effect of particle inertia is negligible. 
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7JTf AT/rp vdrIu’ 
0.075 79 0 
0.150 40 0 
0.520 11  0 
0.420 31 1.95 
0.840 16 1.95 

TABLE 5. Particle properties for forced isotropic turbulence 

4. Dispersion in decaying isotropic turbulence 
4.1. Effect of particle inertia 

For the simulations of decaying isotropic turbulence it is important that Lagrangian 
statistics measured for the particles be computed only after the particles have 
become independent of their initial conditions. One measure of this independence is 
the mcan-square relative velocity between fluid and particles, ((ui - v ~ ) ~ ) .  Figure 7 
shows the time history of this quantity (averaged over the components) for each of 
the values of 7p used in the simulations (in the absence of particle drift). The time axis 
of all figures presented in $4 has been made dimensionless using the time required for 
the autocorrelation of fluid velocities to decrease to l / e  of its initial value. This 
timescale is denoted TE. As would be expected, for increasing 7p (increasing inertia) 
the influence of the initial condition of the particle velocity is more significant and 
more time is required to reach the peak in this quantity. The number of time 
constants required for each particle to reach the peak in the curves in figure 7 is 
shown in table 6. 

Though it is not certain that the particles were independent of their initial 
conditions once the mean-square relative velocity had reached a maximum value, 
( (ui - wi)‘) does provide one indication that the particles are not overly influenced by 
their initial conditions. Thus, results from the simulations of decaying isotropic 
turbulence reported in this paper are computed after ( (ui-v02)  had attained its 
maximum value. 

Lagrangian autocorrelations of the particle velocities are shown in figure 8 (a ) .  
These correlations were obtained from the simulations where only the inertia 
parameter was varied, i.e. in the absence of particle drift. It should be noted that the 
correlations shown for the simulations of non-stationary turbulence are computed as 

where the average over i = j = 1 ,  2, and 3 are shown in figure 8 ( a )  and the following 
figures unless otherwise noted and to corresponds to a time in the simulation following 
the peak in the mean-square relative velocity. The normalization in (4.1) lessens the 
effect on the correlation of the reference time of the measurement, to (Squires & 
Eaton 1991). Shown for comparison in figure 8 ( a )  is the velocity autocorrelation of 
fluid points which exactly track the turbulent fluctuations. As can be seen from the 
figure, the ‘memory ’ of the particle to  its previous velocity is increased as the particle 
inertia increases, thus increasing the correlation coefficient over that  for Auid 
particles. It may also be seen that a t  later times the correlations of the heavy 
particles cross over that  of the fluid points. Thus, a t  long times the particle velocities 
are less correlated than the fluid. It is also evident from figure 8 ( a )  that the 
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FIQURE 7. Time development of the relative velocity in decaying isotropic turbulence. 0-0, 
rP/Tr = 0.06; ----, T J T ,  = 0.12; -.-, rP/Tl = 0.37; 
1.24; -, = 3.72. 

. * ' .  * . a ,  rP/Tl = 0.74; ---. = 

?PIT1 Atpeaklrp 

0.06 2.13 
0.12 1.57 
0.37 0.92 
0.74 0.61 
1.24 0.44 
3.72 0.20 

TABLE 6. Number of time constants required to reach peak in ((ui-vi) ')  

correlations do not decrease to zero at  long separation times. This is presumably due 
to the decay of the turbulent fluctuations with time and the normalization used in 
(4.1). 

Figure 8 ( b )  shows the correlations of fluid velocities along the particle path. Shown 
for comparison in this figure are the temporal correlations of fluid velocities measured 
at fixed points in space, i.e. independent of particle motion. This figure shows that 
at short times the correlation of the fluid velocity along the path of the heavier 
particles decreases more rapidly than does that of the lighter particles. This would 
seem to be caused by the heavier particles 'overshooting' the fluid particle paths. 
Particles that overshoot fluid trajectories encounter low-frequency fluctuations of 
the fluid more often than do lighter particles, which are better able to follow the fluid 
trajectories. This is not unlike the advection hypothesis of Tennekes (1975) which is 
based on arguments that frequencies measured in the Eulerian frame will be higher 
than those in the Lagrangian reference frame because of advection of the small eddies 
by the large scales past a measuring point. Often, this effect is not observed in 
calculations that approximate the turbulent velocity field using random Fourier 
modes since these calculations do not account for the nonlinear interactions of the 
advective terms in the Navier-Stokes equations (e.g. see Riley 1971). Tennekes' 
analysis predicts that  the Eulerian time microscale will be much lower than the 
Lagrangian time microscale (for fluid elements). However, results from these 
simulations are not in good agreement with his theory, possibly due to the low 
Reynolds numbers of the simulations. 
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71 Ti 

FIGURE 8. (a )  Effect of inertia on the particle velocity correlation, Re, = 25.5. -, fluid; ----, 
rP/Tl = 0.03; -.-, 7,/Tf = 0.06, ' . . . . . . , rp/Tf = 0.18; ---, rp/Tf = 0.35. ( b )  Effect of inertia 
on fluid velocity correlations along particle path, Re, = 25.5. -, fixed point; ----, rp/Tf = 0.03; 

, rp/TI = 0.06; . . ' . . . . . , rP/Tl = 0.18; ---, rP/Tl = 0.35. 

The effect of particle inertia on dispersion, <X'((t)), is shown in figure 9(a). The 
dispersion shown in this figure has been non-dimensionalized by PL and u' for fluid 
particles at the reference time of the measurement. This figure shows that for 
increasing particle inertia the dispersion also increases, except for the largest value 
of 7p used in the simulations ( T ~ / T ~  = 0.35). These dispersion measurements were 
used to compute the eddy diffusivity of the particles using (2.3). The eddy 
diffusivities of the particles are shown in figure 9(b) which shows that for all values 
of the particle inertia the eddy diffusivity is greater than that of fluid particles. It 
may also be seen from the figure that the diffusivity increases for increasing values of 
the particle inertia. The particles with the largest inertia, rp/Tf = 0.18, rP/Tf = 0.35, 
have asymptotic values of the eddy diffusivity which are nearly identical and 
roughly 10% greater than that of the fluid. From (2.3) i t  can be seen that a t  long 
diffusion times, for stationary turbulence, the eddy diffusivity will reach a constant 
value. Figure 9(b) shows that even for decaying isotropic turbulence the eddy 
diffusivity reaches an asymptotic value that is nearly time independent. This is 
because the diffusivity is proportional to a lengthscale squared and the inverse of a 
timescale. For decaying isotropic turbulence the lengthscale grows nearly as (ti while 
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FIGURE 9. (a) Effect of inertia on particle mean-square displacement, Re, = 25.5. -, fluid; ----, 
TP/Tf = 0.03; -.-, 7JTf = 0.06; . . . . * .  * , 7p/Tf = 0.18; ---, rP/Tf = 0.35. (b) Effect of inertia 
on particle eddy diffusivity, Re, = 25.5. -, fluid; ----, rP/Tf = 0.06; + * * ' ' . . . , rP/Tf = 0.18; 

, rp/Tf = 0.35. 

the timescale grows nearly as t .  Thus, the net effect is that the asymptotic diffusivity 
is nearly constant. Ftom figure 9(b) the region in which the eddy diffusivity becomes 
approximately time hdependent occurs for time separations greater than about 2PL. 
For t > 2TE the particle eddy diffusivity is 2-10 YO greater than that of the fluid. The 
result that, in the absence of a deterministic drift, the particle eddy diffusivity is 
greater than that of the fluid has also been reported by Reeks (1977) and Pismen & 
Nir (1978). The increases in the particle diffusivity relative to that of the fluid found 
in these studies is comparable to the increases reported here. A quantitative 
comparison of the ratio of the particle to fluid eddy diffusivity is made in $5. 

Finally, it should be remarked that since the turbulence decays nearly self- 
similarly, it is possible to rescale the variables such that the resulting statistics are 
representative of stationary turbulence. This approach was introduced by Taylor 
(1935) and has been applied by other investigators to data obtained from grid 
turbulence experiments (e.g. see Townsend 1954; Snyder & Lumley 1971 ; Shlien & 
Corrsin 1974). While rescaling has been demonstrated to be successful for fluid 
element diffusion the application of a similar analysis to the data of heavy particle 
dispersion may not be appropriate since the timescales and lengthscales experienced 
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by the particle during its motion may not follow the same decay laws as experienced 
by a wandering fluid particle. Therefore, the dispersion measurements of heavy 
particles presented in this study were not re-scaled to account for turbulence decay. 
The reader is referred to Nir & Pismen (1979) for further discussion. 

4.2. Effect of particle drift 
The results presented in this section illustrate the effect of a deterministic particle 
drift velocity on dispersion quantities. Since i t  is desired to examine the effect of 
particle drift on the results, the particle inertia is considered negligible. Thus, the 
particle velocity is the sum of the fluid velocity in the vicinity of the particle plus its 
drift velocity, 

(4.2) w i ( t )  = u i [ X j ( t ) ,  t 1  + zIdr- 

For the results presented here the drift velocity was non-zero in the y (x,)-direction. 
Since the particle velocity given by (4.2) is independent of a particle time constant 
there is no adjustment period in which the particles become independent of their 
initial conditions. Thus, nearly all of the results presented in this section were 
obtained from the first reference time of the measurements. 

The effect of increasing drift velocity on the particle velocity correlation 
components is illustrated in figure 10(a, b ) .  For comparison the velocity correlations 
of fluid elements are also shown. It is evident from the figures that for increasing 
values of the drift velocity the autocorrelation decreases more rapidly. These results 
are consistent with Yudine's (1959) and Csanady's (1963) physical ideas concerning 
loss of correlation due to a crossing-trajectories effect and associated continuity 
effect. That is, as the drift velocity of a particle is increased i t  crosses the paths of 
fluid elements more rapidly and will tend to lose correlation with its previous velocity 
faster than will a fluid element. 

The components of the Lagrangian velocity autocorrelation for one value of the 
drift velocity are shown in figure lO(c). These curves are representative of those 
obtained from the simulations of decaying isotropic turbulence. As is evident from 
the figure, the Correlation of velocities along the drift direction, R$,( t ,7) ,  is more 
persistent than the correlations of velocities perpendicular to the direction of drift. 
This figure helps to show an effect associated with that of crossing trajectories 
referred to as the continuity effect (Csanady 1963). This effect arises when 
considering the dispersion of particles in which the drift velocity is large relative to 
the turbulent fluctuations. For rapid fallout of particles the Lagrangian velocity 
autocorrelation of a heavy particle will be very similar to that of an Eulerian 
space-time correlation. Thus, the Lagrangian correlation of particle velocities along 
the drift direction may be expressed as 

where E g  is the fluid space-time correlation measured in the Eulerian reference 
frame 

Notice that for homogeneous turbulence there is no dependence of the correlation on 
x or z.  

If the fallout velocity is sufficiently rapid the time delay in (4.4) may be neglected. 
For this case the expression for reduces to the two-point spatial correlation of 
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FIGURE 10. Effect of drift on the particle velocity correlation, Re, = 32.3. ( a )  Drift component. ( b )  

, vJu' = 3.17. (c) Components of the Lagrangian velocity correlation. Re, = 32.3, t-,,/u' = 
Normal components. -, fluid; ----, vdr/u' = 0.32; -.-, od,/u' = 0.79; . . . . . . . . , t&/Uf = 1.59; 

., a = 3. 1.59, -, fluid, - ~ ~ ~ ,  a =  1 ;  -.-,a = 2 ;  . . . . . . . 

Eulerian velocities. Thus, in this limiting case the correlations of the particle 
velocities along the drift direction arc nearly identical to the two-point spatial 
correlation of longitudinal velocities measured in the Eulerian reference frame. 
Furthermore, the correlation of velocities perpendicular to the drift direction may be 
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approximated by the two-point correlation of lateral velocities. These correlations of 
lateral velocities must contain negative regions since the continuity constraint 
requires them to satisfy 

dx, dz, = 0, (4.5a) 

and I (@dxldx3 = 0. (4.5b) 
J J  

Thus, it should be expected that for large values of the particle drift velocity the 
correlations of velocities perpendicular to the drift direction will be decreased over 
those along the drift direction. This effect may be seen for all values of the drift 
velocity by comparing figures 10 (a) and 10 (b ) .  These figures also show the difference 
between the correlations increasing as the drift velocity increases. 

Csanady also derived expressions for the components of the diffusivity tensor both 
perpendicular and parallel to the drift direction. Assuming an exponential form for 
the velocity correlations Csanady obtained 

In (4.6) D,, and D,, are the particle eddy diffusivities normal to the drift direction. 
The eddy diffusivity along the particle drift direction is denoted D,, in (4.6). The 
parameter p is the ratio of the product of the Lagrangian timescale of the fluid, T,, 
and ( u 2 ) ;  to the longitudinal Eulcrian integral lengthscale L,, i.e. 

(4.7) 

The factor of 4 appearing in (4.6) gives the correct limiting behaviour as vdr + 0 and 
vd, + 00. For large values of the parameter vd,/u' the continuity effect reduces the 
diffusivity in directions normal to drift by a factor of two relative to the diffusivity 
along the drift direction. 

Asymptotic values of the eddy diffusivity measured from each of the reference 
times of the simulations are compared to Csanady's prediction, equation (4.6), in 
figure 11 (a). The results in figure 1 1  ( a )  show that the agreement between the 
simulation data and (4.6) is quite good for values of vdr/u' less than about 2.5. For 
larger values of this parameter i t  can be observed from the figure that (4.6) under- 
predicts the measurements from the simulation. This discrepancy a t  large values of 
the drift velocity can be in part attributed to eddy decay and the fact that the 
Lagrangian velocity autocorrelation normal to the particle drift direction does not 
closely approximate the two-point spatial Eulerian correlation of lateral velocities. 
Examination of figure 10 ( b )  shows that even for large values of the drift velocity this 
correlation does not possess significant regions containing negative loops. Other 
discrepancies between Csanady's prediction and the simulation data are due to such 
factors as the assumed form of the velocity autocorrelation. Csanady assumes the 
velocity autocorrelation to be a decaying exponential function. This functional form 
has been suggested by Hinze (1975) and used by other investigators (e.g. Picart, 
Berlemont & Gouesbet 1986). However, for low-Reynolds-number turbulence the 
decaying exponential function does not predict the autocorrelation as well as a t  
higher Reynolds numbers (Yeung & Pope 1989). 

Shown in figure 1 1  ( b )  is the ratio of the asymptotic value of the eddy diffusivity 
of particles along the drift direction to  the asymptotic eddy diffusivity of the fluid. 
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FIGURE 11 .  (a) Ratio of the asymptotic values of the eddy diffusivities in isotropic turbulence. 0, 
Re, = 32.3; 0, Re, = 30.8; A, Re, = 29.4; +, Re, = 28.0; x , Re, = 26.7; 0 ,  Re, = 25.5; ----, 
equation (4.7). (b) Ratio of the asymptotic values of the eddy diffusivities in isotropic turbulence. 
0,  Wells & Stock (1983), 5 pm; 0,  Wells & Stock (1983), 57 pm; A, Re, = 32.3; +, Re, = 30.8; 
x ,  Re, = 29.4; 0 ,  Re, = 28.0; V, Re, = 26.7; [XI, Re, = 25.5; ----, equation (4.9). 

Also shown in this figure are the measurements from the experiment of Wells &, Stock 
(1983) as well as the prediction of Csanady. For the asymptotic value of the 
diffusivity along the particle drift direction Csanady predicts 

where D,, is the particle eddy diffusivity along the drift direction and D, is the 
asymptotic value of the fluid eddy diffusivity. Examination of figure 11 ( 6 )  shows 
that agreement between the simulation data and the data of Wells & Stock is good 
and that (4.8) slightly under-predicts both the simulation and experimental 
measurements. It may also be seen from the figure that simulation measurements of 
D,,/Df are greater than unity for small values of the drift velocity. This may be in 
part due to the available sample from which the particle velocity correlations were 
computed, i.e. if the correlations could be computed by averaging over other 
simulations, it should be expected that D,,/DI would be less than unity for small drift 
velocities. 



Measurements of particle dispersion 23 

% 3 -  

3 
F '  

22 2 -  
5 

g 1 -  

2 -  -_-- 

v -  
2; 
2 

f -  
A 
h '  

v 

Y '  
------ 

0 1 2 3 4 
TI T', 

FIGURE 12. Effect of drift on the particle mean-square displacement, Re, = 32.3. (a) Drift 
component. (b) Normal components. -, fluid; ----, vdr/u' = 0.32, ---, VJU' = 0.79; 
. . . . . . . . , V ~ , / U '  = 1.59; ---, vdrlu' = 3.17. 

The dispersion measurements for the drift cases are shown in figure 12. Consistent 
with the crossing-trajectories and continuity effect the particle dispersion is reduced 
as the drift velocity of the particle is increased. Comparison of these figures shows 
that the dispersion is decreased more in the directions normal to the drift direction 
than i t  is in the direction along particle drift. 

Time histories of the eddy diffusivities for these cases are shown in figure 13. These 
figures show that as the drift velocity is increased the eddy diffusivity is decreased 
and it is also decreased unequally in the directions perpendicular and parallel to the 
particle drift. Figure 13 also shows that it is difficult to  define an asymptotic 
diffusivity for the simulations of decaying isotropic turbulence. In contrast with the 
eddy diffusivities for particle dispersion in the absence of drift (figure 9b), the eddy 
diffusivities for these cases do not become time-independent a t  long diffusion times. 
This helps illustrate that the velocity and timescales experienced by the drifting 
particle are not the same as those experienced by a fluid element. This makes it quite 
difficult to apply a re-scaling of the variables in order to make the results 
representative of those obtained from stationary turbulence. 
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FIGURE 13. Effect of drift on the particle eddy diffusivity, Re,, = 32.3. ( a )  Drift component. ( b )  
Pu'ormal components. -, fluid; ----, vd,/u' = 0.32; -.-, vdr/u' = 0.79; . . . . . . . . ~ vdr/u' = 1.59; 

~ vd,/u' = 3.17. 

5. Dispersion in forced isotropic turbulence 
Shown in figure 14 ( a )  are the Lagrangian velocity autocorrelations obtained from 

simulations of forced isotropic turbulence for three values of the particle time 
constant. The velocity correlations obtained from the simulat'ions of forced isotropic 
turbulence were computed using 

The correlations presented in this section have been averaged over the three 
component directions (a = 1 , 2  and 3) and the time axis has been made dimensionless 
using the Lagrangian integral timescale of the fluid, T,. The correlations shown in 
figure l4 (a)  are for particles in which the drift velocity is negligible. These figures 
illustrate the effect that increasing the particle inertia increases the particle 
' memory ' a t  its previous velocity, thus increasing its velocity autocorrelation. 
Similar results were also obtained from the simulations of decaying isotropic 
turbulence (see $4.1 and figure 8a) .  Figure 14(b) shows the velocity correlations of 
the fluid along the particle path for these particle time constants. This figure helps 
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14. Effect of inertia on velocity correlations. (a )  Particle velocity correlations. (b) Fluid 
correlations along particle path. -, fluid; ----, rp/Tf = 0.075; -.-, rp /T ,  = 0.15; 
. , rp/Tf = 0.52. 

?,IT, D,/@ D,lQ 
0.075 0.999 1.046 
0.150 0.998 1.160 
0.520 0.983 1.06 1 

TABLE 7 .  Comparison of particle and fluid eddy diffusivities from stationary isotropic turbulence 

to illustrate that the fluid neighbourhood sampled by the particle during its motion 
is dependent on its inertia since the fluid velocity correlations along the particle 
trajectory are different for each of the particle time constants used in the simulation. 

Asymptotic eddy diffusivities were calculated using (2.3) and the results are 
summarized in table 7. In  table 7 the value of D,/Df is the ratio of the eddy 
diffusivity of the particles to that  of the fluid along the particle path. The quantity 
D,/D, is the ratio of the eddy diffusivity of the heavy particles to  the eddy diffusivity 
of fluid elements. The quantity D, is not dependent on the particle motion and 
therefore the particle inertia. 

The values of D,/D, show that the asymptotic diffusivity of heavy particles is 
greater than that of fluid elements when the effect of particle drift is neglected. These 
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FIGURE 15. Effect of particle inertia on the asymptotic value of the eddy diffusivity in forced 
isotropic turbulence. 0-0, Pismen & Kir (1978); 0, simulation results. 

results are also consistent with those obtained from the simulations of decaying 
isotropic turbulence using heavy particles with the drift velocity set equal to zero 
(see $4.1 and figure 96). 

It can be seen from table 7 that  the values of D,/Dg are nearly equal to 1, with an 
increasing deviation from 1 for increasing particle inertia. The particle equation of 
motion may be used to interpret this result. In  the absence of particle drift the 
equation of motion may be written as (see (3.13)) 

dv 
dt 

7 -+v(t) = u(t) ,  

considering for the moment the one-dimensional case. 
As was shown in $2 this equation can be used to  obtain a relationship between the 

power spectrum of the velocities of the particles and turbulence. This relationship is 
given in (2.8) and rewriting this for the one-dimensional case under discussion gives 

(5 .3)  

It was also shown in $2 that the long-time diffusivity is equal to the zeroth mode 

(7 iw2+  1) E,L(o) = EQL(w). 

of the power spectrum. Using (5.3) i t  is clear that  at long diffusion times 

D,(oo) = D?(CO). (5.4) 

Based on this analysis it should be expected that the values of D,/DB would be 
identically equal to one if the simulation could be run for times long enough to 
approximate t + 00. This also explains the increasing deviation from one of this 
parameter for increasing particle inertia. Since the simulations were advanced the 
same number of timesteps the lighter particles travelled more particle time constants 
than the heavy particles and thus are closer to the long-time asymptote where 
D,/Df = 1. Finally, it is important to note that while (5.4) is not directly dependent 
upon the particle time constant, this does not imply that the particle eddy diffusivity 
is independent of particle inertia. The particle time constant influences the particle 
motion through (5.3) and therefore indirectly determines the eddy diffusivity, as can 
be observed in the values of D,/D, in table 7 .  Shown in figure 15 is a comparison of 
D,/D, obtained from the simulations with the results of Pismen &, Nir (1978) who 
studied the dispersion of heavy particles using Corrsin’s (1959) independence 
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16. Time development of relative velocity, vdr/u' = 1.95. (a) rp/Tf = 0.42. 
, i = 3 .  

0.1 1 
( b )  rp/Tf = 0.84. 

approximation. As is evident. from the figure, the simulation results are greater than 
the values predicted by Pismen & Nir, though the agreement is generally good. 
As is also evident from figure 15, Pismen & Nir found a monotonic increase in the 
eddy diffusivity for increasing particle time constants, unlike the results from the 
present simulations. This may reflect a sensitivity of this statistic to the sample of 
large-scale motions in the simulations of forced turbulence. 

Two simulations were performed in which both the particle time constant and drift 
velocity were non-zero. As is also the case for particles where only the particle inertia 
is non-zero there is an adjustment period in which the particles are influenced by 
their initial conditions. Using the mean-square relative velocity difference as a 
measure of this adjustment period, figure 16 shows the time history of the quantity 
{ (ui - vJ2) for the two cases used in the simulation. Figure 16 (a) shows this quantity 
for the lighter particles and by comparison to figure 16(b) it  may be observed this 
difference is less than for the heavy particles. Both figures 16(a) and 16(b) show the 
mean-square velocity difference ( ( ~ ~ - 2 ) ~ ) ~ )  to be less than the other two velocity 
components. This difference is evidently due to the drift velocity being imposed in 
this direction only. The slight differences between the components of the mean- 
square relative velocity in the directions perpendicular to the drift direction are due 
to the slight anisotropy of the forcing scheme. 

2 FLM 226 
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FIGURE 17. Time development of component energies, vdr/u' = 1.95. (a )  rp /T ,  = 0.42. ( b )  T , / T ,  = 
0.84. -, i = 1 ,  3 particles; ---- . i = 1 ,  3 fluid; -.-, i = 2 particles; . . . . . . . . .  i = 2 fluid. 

7 p ~ ~ r  vdr/ut v:/q; v;lq; v:/q; 
0.42 1.95 0.307 0.393 0.300 

t0.42 1.95 0.31 0.38 0.31 
0.84 1.95 0.303 0.401 0.296 
t0.84 1.95 0.30 0.40 0.30 

t Reeks (1977). 

TABLE 8. Distribution of particle energies from stationary isotropic turbulence 

Figure 17 shows the components of the particle and fluid kinetic energies for the 
two cases and the differences between the drift component and other velocity 
components is clear. For isotropic turbulence the distribution of energies among the 
three components of the fluid velocity is, of course, 5. However, for particles in which 
the drift velocity and particle inertia are non-zero this is not the case. Table 8 shows 
the distribution of the particle kinetic energy among the velocity components 
corresponding to the statistically stationary portion of the simulation. These values 
show that the distribution of the energies among the components is nearly 
independent of particle inertia, depending only on the ratio of vdr/u'. Also shown in 
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71 TL 
FIGURE 18. Effect of inertia on velocity correlations, wJu' = 1.95. ( a )  Drift component. ( b )  Normal 
components. -, fluid; ----, rp/Tl = 0.42; -.-, fluid for rp/Tr = 0.42; . . . . . . . . , rp /Tf  = 0.84; 

, fluid for rp/Tl = 0.84. 

table 8 is an approximate comparison to a study by Reeks (1977). The comparison 
i s  approximate since Reeks did not show results for identical values of rp/Tf and 
vdr/u' used in these simulations. However, there was not a wide variation of these 
ratios for this range of parameters in his study and thus the comparison is useful. It 
may be seen from table that the agreement between the simulation data and the 
results from Reeks' study is quite good. 

Shown in figure 18 are the velocity autocorrelations of the particle velocities and 
thc fluid velocities in the neighbourhood of the particle. Also shown for comparison 
is the velocity autocorrelation of fluid elements. Results from s(4.1) showed that 
increasing particle inertia increased the correlation of heavy particle velocities over 
that of fluid elements. Figure 18 shows that this effect is offset by the drift velocity 
of the particle. For the lighter particle (rp/Tf = 0.42) the correlation of the velocities 
along the drift direction is nearly coincident with that of the fluid elements a t  small 
time separations. It may also be seen from these figures that the correlations of fluid 
velocities along the particle path are nearly the same for each of the particle time 
constants. 

Time histories of the components of the eddy diffusivities are shown in figure 19. 
This figure illustrates the dramatic effect of the drift velocity on reducing the 

2 2  
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19. Effect of inertia on particle eddy diffusivity, vdr/u' = 1.95. -, fluid; 
0.42; --.--,i =2,rp/Ti=O.84; . ' . ' . ' ' .  , i = 1 ,  3, rp/Tf = 0.42; ---, i = 

1 .o 

0.5 
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, i = 2 ,  
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_ _ _ _  

T /  TI. 

FIQURE 20. Effect of inertia on particle eddy diffusivity, vdr/u' = 1.95. -, i = 1, 3, rp/T, = 
0.42; ----, i = 2, r p / T f  = 0.42; -'-, i = 1 ,  3, rp/Ti = 0.84; . . . . . ' . ' ,  i = 2, rp /T ,  = 0.84. 

dispersion of heavy particles. For the values of Tp/Tf used in these simulations it may 
be observed from the figure that the diffusivity is only weakly dependent on particle 
inertia. It can also be seen from figure 19 that the diffusivity in the directions normal 
to the drift direction is less than the diffusivity along the drift direction. These results 
are consistent with the crossing-trajectories and continuity effect. 

Usually of interest in problems involving turbulent dispersion of heavy particles 
is the asymptotic value of the eddy diffusivity. The time history of Dpi(t ) /Dpi(  00)  is 
shown in figure 20. This figure shows that the components of the diffusivity normal 
to the drift direction can be greater than the asymptotic value for some values of 
time. This does not mean, however, that the particles disperse faster than fluid 
elements for these time intervals. Figure 19 shows that this is clearly not the case. 
It may also be seen from figure 20 that only a slight increase in the eddy diffusivity 
over the asymptotic value is attained for the components along the particle drift 
direction. 
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Some models of particle dispersion by turbulence are based on choosing functional 
forms of the Lagrangian velocity correlation of the fluid velocities along the particle 
path (see $ 2 ) .  Gouesbet et al. (1984) use such an approach and they recommend the 
following functional form for the velocity correlation : 

(5.5) 

where the recommended value of the parameter m in (5.5) is m = 1. Gouesbet has 
shown that by using (5.5) it is possible that heavy particles will disperse faster than 
fluid elements. However, this analysis is derived in the framework of Tchen’s theory 
for which the effect of an external body force is ignored. Since ‘overshooting’ is not 
allowed in Tchen’s theory it seems unlikely that the correlation of fluid velocities 
along the particle path will have negative loops. None of the velocity correlations of 
the fluid along the particle path showed negative regions from the simulations. Picart 
et al. (1986) have used (5.5) along with a correction for the crossing-trajectories effect 
and obtained good agreement with Snyder & Lumley’s (1971) data for particle 
dispersion in decaying isotropic turbulence. It should be remembered that the data 
of Snyder & Lumley is strongly influenced by the crossing-trajectories effect and 
therefore the form of the correction applied by Picart for crossing-trajectories may 
have been critical to the success of the model. This would seem to be especially true 
since the correction made for crossing trajectories does not account for the differences 
in dispersion in the vertical and horizontal planes. Since Picart could only check the 
dispersion transverse to the mean flow it seems likely that the dispersion in the other 
plane would be poorly predicted. 

Finally, models that  rely on the approach of specifying the functional form of the 
velocity autocorrelation along the particle path also require specification of the 
Lagrangian integral timescale. Picart et al. used a k - s  model to obtain the 
turbulence properties and specify the Lagrangian integral timescale as 

( 4 )  PLi x 0.20-. 
6 

Application of (5.6) underpredicts the actual value of PL1 and PLB from the 
simulations by a factor of 1.1 while T,, is under predicted by a factor of 2.1. It should 
be remembered that Tft in (5.6) is the Lagrangian integral timescale of the fluid 
elements along the particle path. Using (5.6) to  calculate the Lagrangian integral 
timescale of fluid elements (independent of particle inertia or drift) underpredicts the 
actual value by a factor of 3.8. The integral timescale is also a function of vdr/u’ but 
(5.6) does not allow for any dependence of PLi on this quantity. Therefore, the 
reasonable agreement between the predicted and measured values of PLLl and PLL2 are 
most probably fortuitous. Equation (5.6) should not be expected to predict PLl and 
PL3 as accurately for other ratios of vd,/u’. Even with these shortcomings Picart 
et al. reported good agreement with both Snyder & Lumley’s experiment and the data 
of Wells & Stock (1981). 

6. Summary 
The dispersion characteristics of heavy particles have been investigated using 

direct numerical simulation of decaying and forced isotropic turbulence. It was 
shown that, in the absence of an externally imposed body force, the dispersion of 
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particles in both decaying and forced isotropic turbulence is greater than that of fluid 
elements. It is important to note that the eddy diffusivity along the particle path is 
equal to that of heavy particles in the limit t + co for stationary turbulcnce. This was 
seen to be very nearly true in the simulations, especially for lighter particles. 
Increases in particle-eddy diffusivities relative to the fluid have also been reported in 
the analytical studies by Reeks (1977) and Pismen & Nir (1978). The increases in the 
particle-eddy diffusivity found in the present study were also in reasonable 
agreement with those reported by Reeks, and Pismen & Nir. 

For applications in which the effect of particle inertia is negligible it was 
demonstrated that the effect of an externally imposed body force significantly 
reduces particle dispersion over that of fluid elements. It was also shown that because 
of the continuity effect, this reduction in particle dispersion is greater in directions 
normal to particle drift than parallel to the drift direction. Comparison of the 
simulation results with the Csanady’s theory and the experimental measurements of 
Wells & Stock (1983) showed good agreement. 

Lagrangian velocity correlations were found to  exhibit negative regions only for 
cases in which the drift velocity is non-zero. Dispersion models that specify the 
functional form of the fluid velocity correlation along the particle trajectory should 
not be expected to perform well if the function allows for negative loops and particle 
drift is not significant. 

The authors would like to thank Dr Robert Rogallo a t  the NASA-Ames Research 
Center for the use of his code and Dr Alan A. Wray of the NASA-Ames Research 
Center for his help with the VECTORAL compiler. This work was supported by the 
National Science Foundation (grant no. MEA-83-51417) and the Office of Naval 
Research who supported the first author with a graduate fellowship. 

Appendix. Description of forcing scheme 
Statistically stationary isotropic turbulence was obtained in the present study by 

forcing the low-wavenumber modes of the velocity field. The method used in this 
study was developed by Hunt et al. (1987) in their examination of the space-time 
structure of isotropic turbulence. In their scheme a steady, non-uniform force field 
is introduced a t  the large scale of the flow. Since the mean flow induced by the force 
is unstable, instabilities subsequently develop. This in turn leads to a chaotic 
structure with motions at  all scales. 

Symbolically, the addition of a forcing acceleration to  the momentum equations 
may be expressed as 

&(k, t )  
dt 

= ci,(k, t )  +h(k) ,  

where Zii(k, t )  is the Fourier transform of the ith component of the velocity field a t  
wavevector k ,  cii(k, t )  is the Fourier transform 0: the rate of change of velocity with 
time from the Navier-Stokes equations, and f , (k)  is the acceleration due to the 
imposed force field. 

The spectrum of the forcing coefficients was chosen to have contributions from 
valuesofk=(l4)f,i.e.k=(fl,f2,+3),(+3,+2,fl),(f2, f l , f 3 ) , ( + 3 , f l ,  
f 2 ) ,  ( f 1, f3 ,  f 2 ) .  For a force field applied at this radius there are 24 combinations 
of the wavevector k whose magnitude is equal to (14);. Considering the Fourier 
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transform of the force field the real and imaginary parts of the three compon$nts of 
fik) yield 144 unknowns. Aside from the constraint that the moments off(k) be 
isotropic, additional constraints satisfied by the force field were 

k - f =  0, (A 2) 

and fifl = 1 .  (A 3) 
" 1  

Equation (A 2) constrains the force field to be solenoidal and therefore avoid the 
generation of large pressure fluctuations. Equation (A 3) was enforced for each 
wavevector k such that Ikl = (14);. 

For a force field applied at Ikl = (14); the moments o f j k )  up to  fourth order may 
be constrained to satisfy isotropy. These constraints along with (A 2) and (A 3) yield 
a nonlinear system of 144 equations. This system of equations was then solved for the 
Fourier coefficients of the force field using the Polak-Ribiere conjugate gradient 
method (see Press et al. 1987). 
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